A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning.

نویسندگان

  • Kahp Y Suh
  • Jiehyun Seong
  • Ali Khademhosseini
  • Paul E Laibinis
  • Robert Langer
چکیده

We present a simple, direct soft lithographic method to fabricate poly(ethylene glycol) (PEG) microstructures for protein and cell patterning. This lithographic method involves a molding process in which a uniform PEG film is molded with a patterned polydimethylsiloxane stamp by means of capillary force. The patterned surfaces created by this method provide excellent resistance towards non-specific protein and cell adsorption. The patterned substrates consist of two regions: the molded PEG surface that acts as a resistant layer and the exposed substrate surface that promotes protein or cell adsorption. A notable finding here is that the substrate surface can be directly exposed during the molding process due to the ability to control the wetting properties of the polymer on the stamp, which is a key factor to patterning proteins and cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Microstructures Embedding Controllable Particles Inside Dielectrophoretic Microfluidic Devices

This paper presents a method of particle manipulation by dielectrophoresis (DEP) and immobilization using photo‐crosslinkable resin inside microfluidic devices. High speed particle manipulation, including patterning and concentration control by DEP was demonstrated. Immovable and movable microstructures embedding particles were fabricated on‐ chip. Several microelec...

متن کامل

Fabrication and Self-assembly of Movable Microstructures Embedding Cells inside Microfluidic Devices

Currently the research about large quantities cells assembly is seriously regarded, since it can provide high efficiency methods for artificial tissue engineering. In this paper, we report a cell assembly method based on cell immobilization by photo-crosslinkable resin and microfluidic self-assembly inside microfluidic devices. The on-chip fabrication of movable microstructures embedding yeast ...

متن کامل

Fabrication of Particulate Reservoir-Containing, Capsulelike, and Self-Folding Polymer Microstructures for Drug DeliveryWe thank Nicholas Ferrell and Dr. John Lannutti of The Ohio State University for technical assistance. This work was partially funded by NSF DMI-0304112

Silicon-based microfabrication technology for manufacturing computer chips has been adopted to fabricate advanced particulate drug-delivery microdevices. However, for this application, the technology suffers from some inherent limitations, including the high cost and biological and pharmaceutical incompatibility associated with the silicon-based materials and clean-room-based processing methods...

متن کامل

Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells.

The soft lithographic technique is a collection of simple and cost-effective patterning techniques which applies an elastomeric stamp to transfer a nano/micro-scale pattern. Patterning biological materials using soft lithography provides procedurally simple control of the surface chemistry and the cell environments. However, conventional methods for generating microstructures on a substrate req...

متن کامل

Influence of Additives on Fabrication and Release from Protein Loaded Microparticles

       The purpose of this study was to investigate the effect of additives, poly(ethylene glycol) (PEG) 1450, poloxamer 407, polyvinyl alcohol (PVA) and sodium chloride in order to improve physico-chemical characteristics, encapsulation efficiency and in vitro release of bovine serum albumin, form poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles prepared by the w/o/w solvent evaporation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2004